

TEST REPORT

Reference No	:-1	WTF22F04082679N
Applicant	: 3	Mid Ocean Brands B.V.
Address	9) - 20	7/F., Kings Tower, 111 King Lam Street, Cheung Sha Wan, Kowloon, Hong Kong
Manufacturer	2	114746
Address	÷-	I start a start and a start when when when a start and
Product Name	: 5	Wireless bamboo speaker
Model No	1	MO6669
Test specification	iner.	Photobiological safety of lamps and lamp systems EN 62471:2008 IEC 62471:2006 (First Edition)
Date of Receipt sample	je ^{ste}	2022-04-28
Date of Test	;	2022-04-28 to 2022-05-10
Date of Issue	: ,	2022-05-10
Test Report Form No	:	WPL-62471A-01A
Test Result	:	Pass

Remarks:

The results shown in this test report refer only to the sample(s) tested, this test report cannot be reproduced, except in full, without prior written permission of the company. The report would be invalid without specific stamp of test institute and the signatures of approver.

Prepared By: Waltek Testing Group (Foshan) Co., Ltd. Address: No.13-19, 2/F., 2nd Building, Sunlink International Machinery City, Chencun, Shunde District, Foshan, Guangdong, China Tel:+86-757-23811398 Fax:+86-757-23811381 E-mail:info@waltek.com.cn

Tested by:

7m 24 Finn

Approved by

Akin Xu

Page 1 of 14

~

Tuesla Maula		Wireless bamboo speaker		sures when a	
I rade Mark	i N	None			
"(See remark #)" "(See appended t Throughout this r Remark: 1. Measuremen	#)" refers to additional refers to a remark app table)" refers to a table report a comma (point) at was conducted at vo	information appended to the bended to the report. appended to the report. is used as the decimal sepa oltage 5VDC and at a stable a red in this report as below:	arator.	ture 25°C±5°C.	
Item	Model	Ratings	ССТ	Driver	
15	 MO6669	5VDC		15 15 5	
		See below			
1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 -	on group	exempt⊠	risk 1⊡ ri	isk 2 risk 3	
	10° 40° 20°				
Bulb)		t in page 2		
Bulb Rated of the lamp		See model lis	t in page 2		
Bulb Rated of the lamp Furthermore marl	 king on the lamp	See model lis	t in page 2		
Bulb Rated of the lamp Furthermore marl Seasoning of lam	b king on the lamp Ips according IEC stand	See model lis	t in page 2		
Bulb Rated of the lamp Furthermore marl Seasoning of lam Used measureme	b king on the lamp ps according IEC stand ent instrument	See model lis None dardNone	t in page 2		
Bulb Rated of the lamp Furthermore marl Seasoning of lam Used measureme Temperature by r	b king on the lamp ps according IEC stand ent instrument	See model lis None dard None See page 13 	t in page 2		
Bulb Rated of the lamp Furthermore marl Seasoning of lam Used measureme Temperature by r Information for sa	b king on the lamp ps according IEC stand ent instrument neasurement lfety use	See model lis None dard None See page 13 	t in page 2	and and and and	
Bulb Rated of the lamp Furthermore marl Seasoning of lam Used measureme Temperature by r Information for sa	b king on the lamp ps according IEC stand ent instrument neasurement fety use se verdicts:	See model lis None dard None See page 13 	The antific and	and and and and	
Bulb Rated of the lamp Furthermore mark Seasoning of lam Used measureme Temperature by r Information for sa Possible test case	b king on the lamp ps according IEC stand ent instrument neasurement ifety use se verdicts: s not apply to the test o	See model lis None dard None See page 13 25 ± 5 °C 	The antific and	and and and and	
Bulb Rated of the lamp Furthermore mark Seasoning of lam Used measureme Temperature by r Information for sa Possible test case – test case doe – test object do	b king on the lamp ps according IEC stand ent instrument neasurement fety use se verdicts: s not apply to the test of es meet the requireme		The antific and	AND AND AND AND	

103

121

Clause	Requirement + Test	Result – Remark	Verdict			
de la	and the second	فالب الكوين الكوين	P			
4	EXPOSURE LIMITS					
4.1	General	and the state where	Y° [™] P			
ster and	The exposure limits in this standard is not less than 0,01 ms and not more than any 8-hour period and should be used as guides in the control of exposure	and sources assures	S P			
	Detailed spectral data of a light source are generally required only if the luminance of the source exceeds 10 ⁴ cd·m ⁻²	see clause 4.3	Р			
4.3	Hazard exposure limits	50°	Р			
4.3.1	Actinic UV hazard exposure limit for the skin and eye	de la la	Р			
parties all	The exposure limit for effective radiant exposure is 30 J·m ⁻² within any 8-hour period	When Marine Marine	Р			
and and	To protect against injury of the eye or skin from ultraviolet radiation exposure produced by a broadband source, the effective integrated spectral irradiance , E_s , of the light source shall not exceed the levels defined by:	Set and and and a	Ρ			
white a	$E_{\rm s} \cdot t = \sum_{200}^{400} \sum_{t} E_{\lambda}(\lambda, t) \cdot S_{\rm UV}(\lambda) \cdot \Delta t \cdot \Delta \lambda \le 30 \qquad \text{J·m}^{-2}$	and an area and	P			
minet and	The permissible time for exposure to ultraviolet radiation incident upon the unprotected eye or skin shall be computed by:	mart ward	Р			
Set and	$t_{\max} = \frac{30}{E_s} \qquad s$	and white white a	P			
4.3.2	Near-UV hazard exposure limit for eye					
49-27-04-149 15-4-15	For the spectral region 315 nm to 400 nm (UV-A) the total radiant exposure to the eye shall not exceed 10000 J·m ⁻² for exposure times less than 1000 s. For exposure times greater than 1000 s (approximately 16 minutes) the UV-A irradiance for the unprotected eye, E _{UVA} , shall not exceed 10 W·m ⁻² .	and and a south	P			
et andret	The permissible time for exposure to ultraviolet radiation incident upon the unprotected eye for time less than 1000 s, shall be computed by:	t and and all	Р			
MALLER .	$t_{\max} \le \frac{10000}{E_{\text{UVA}}} \qquad \text{s}$	and and and	P.+			
4.3.3	Retinal blue light hazard exposure limit	See table 4.2	Р			
nii an Set anist	To protect against retinal photochemical injury from chronic blue-light exposure, the integrated spectral radiance of the light source weighted against the blue-light hazard function, $B(\lambda)$, i.e., the blue-light weighted radiance , L _B , shall not exceed the levels defined by:	and and and and	P			
- ununun	$L_{\rm B} \cdot t = \sum_{300}^{700} \sum_{t} L_{\lambda}(\lambda, t) \cdot B(\lambda) \cdot \Delta t \cdot \Delta \lambda \le 10^6 \qquad \rm J \cdot m^{-2} \cdot sr^{-1}$	for t $\leq t_{\text{max}} = \frac{10^6}{L_B}$	P			

IEC/EN 62471					
Clause	Requirement + Test	Result – Remark	Verdict		
and the state	$L_{\rm B} = \sum_{300}^{700} L_{\lambda} \cdot B(\lambda) \cdot \Delta \lambda \le 100 \qquad \qquad {\rm W} \cdot {\rm m}^{-2} \cdot {\rm sr}^{-1}$	Set set all	P		
4.3.4	Retinal blue light hazard exposure limit - small source	m. m. s.	N		
^{نی} انی ^س تند ایک ملک	Thus the spectral irradiance at the eye E_{λ} , weighted against the blue-light hazard function $B(\lambda)$ shall not exceed the levels defined by:	and another and	N		
and and a second	$E_{B} \cdot t = \sum_{300}^{700} \sum_{t} E_{\lambda}(\lambda, t) \cdot B(\lambda) \cdot \Delta t \cdot \Delta \lambda \le 100 \qquad J \cdot m^{-2}$	white white and	N		
and and a second	$E_{\rm B} = \sum_{300}^{700} E_{\lambda} \cdot B(\lambda) \cdot \Delta \lambda \le 1 \qquad \rm W \cdot m^{-2}$	2012 2012 2012 2014 11 201 201 201	N		
4.3.5	Retinal thermal hazard exposure limit	when when when	Р		
sat sans t	To protect against retinal thermal injury, the integrated spectral radiance of the light source, L_{λ} , weighted by the burn hazard weighting function $R(_{\lambda})$ (from Figure 4.2 and Table 4.2), i.e., the burn hazard weighted radiance, shall not exceed the levels defined by:	and and and and a	Р		
	$L_{R} = \sum_{380}^{1400} L_{\lambda} \cdot R(\lambda) \cdot \Delta \lambda \le \frac{50000}{\alpha \cdot t^{0,25}} \qquad W \cdot m^{-2} \cdot sr^{-1}$	(10 µs ≤ t ≤ 10 s)	P)		
4.3.6	Retinal thermal hazard exposure limit - weak visual stimulus	1.5 8	Р		
ar synift	For an infrared heat lamp or any near-infrared source where a weak visual stimulus is inadequate to activate the aversion response, the near infrared (780 nm to 1400 nm) radiance, L_{IR} , as viewed by the eye for exposure times greater than 10 s shall be limited to:	and an and	P		
where a	$L_{\rm IR} = \sum_{780}^{1400} L_{\lambda} \cdot R(\lambda) \cdot \Delta \lambda \le \frac{6000}{\alpha} \qquad W \cdot {\rm m}^{-2} \cdot {\rm sr}^{-1}$	1971 - 1971 - 1971 1971 - 1971 - 1971	Р		
4.3.7	Infrared radiation hazard exposure limits for the eye	me an in	Р		
iner suni ex suniner	The avoid thermal injury of the cornea and possible delayed effects upon the lens of the eye (cataractogenesis), ocular exposure to infrared radiation, E_{IR} , over the wavelength range 780 nm to 3000 nm, for times less than 1000 s, shall not exceed:	and white white	P		
SUNCTED N	$E_{\rm IR} = \sum_{780}^{3000} E_{\lambda} \cdot \Delta \lambda \le 18000 \cdot t^{-0,75} \qquad \rm W \cdot m^{-2}$	amont white and	Р		
nu sun	For times greater than 1000 s the limit becomes:	STRA MIRA MAR	P		
ret mout	$E_{\rm IR} = \sum_{780}^{3000} E_{\lambda} \cdot \Delta \lambda \le 100 \qquad \rm W \cdot m^{-2}$	for any other and the	P P		
4.3.8	Thermal hazard exposure limit for the skin	5 S S	с Р		
	Visible and infrared radiant exposure (380 nm to 3000 nm) of the skin shall be limited to:	And And M	Р		

Waltek Testing Group (Foshan) Co., Ltd. http://www.waltek.com.cn

IEC/EN 62471					
Clause	Requirement + Test	Result – Remark	Verdic		
and the state	$E_{H} \cdot t = \sum_{380}^{3000} \sum_{t} E_{\lambda}(\lambda, t) \cdot \Delta t \cdot \Delta \lambda \le 20000 \cdot t^{0,25} \qquad J \cdot m^{-2}$	at st st	P		
5	MEASUREMENT OF LAMPS AND LAMP SYSTEMS				
5.1	Measurement conditions	State with and the	P		
	Measurement conditions shall be reported as part of the evaluation against the exposure limits and the assignment of risk classification.	or anniner anniner ar	P		
5.1.1	Lamp ageing (seasoning)	15 15 1	N ^o		
and a second	Seasoning of lamps shall be done as stated in the appropriate IEC lamp standard.	white where where	N		
5.1.2	Test environment	NITE MUST WAS	Р		
inet would	For specific test conditions, see the appropriate IEC lamp standard or in absence of such standards, the appropriate national standards or manufacturer's recommendations.	Set anoset anoset.	Р		
5.1.3	Extraneous radiation	5 50 .5°	P		
Survey a	Careful checks should be made to ensure that extraneous sources of radiation and reflections do not add significantly to the measurement results.	and an and and	P.		
5.1.4	Lamp operation	1. 1. 1. 1.	P		
n in the	Operation of the test lamp shall be provided in accordance with:	and and	Р		
all	- the appropriate IEC lamp standard, or	and and and a	N		
L A	- the manufacturer's recommendation	the state	P(
5.1.5	Lamp system operation	and the second and	P		
united at	The power source for operation of the test lamp shall be provided in accordance with:	and and and	Р		
	- the appropriate IEC standard, or	a de de	P		
an an	- the manufacturer's recommendation	and and a start	_ P√		
5.2	Measurement procedure	1 A A	P .		
5.2.1	Irradiance measurements	white white w	Р		
dit.	Minimum aperture diameter 7mm.	the state of	∂ P [∂]		
The i	Maximum aperture diameter 50 mm.	and and and	Р		
put the with	The measurement shall be made in that position of the beam giving the maximum reading.	strek miret anirek	Р		
15 1	The measurement instrument is adequate calibrated.	a de de	P		
5.2.2	Radiance measurements	and white a	P		
5.2.2.1	Standard method	the state	e P		
Sec.	The measurements made with an optical system.	and and all	Р		

Clause	Requirement + Test	Result – Remark	Verdict
411- 411-104-14	The instrument shall be calibrated to read in absolute radiant power per unit receiving area and per unit solid angle to acceptance averaged over the field of view of the instrument.	and and and and	P
5.2.2.2	Alternative method	1 1 15	P
er site	Alternatively to an imaging radiance set-up, an irradiance measurement set-up with a circular field stop placed at the source can be used to perform radiance measurements.	an and and	Р
5.2.3	Measurement of source size	an an a	Р
Maine . Let	The determination of α , the angle subtended by a source, requires the determination of the 50% emission points of the source.	and and and	Р
5.2.4	Pulse width measurement for pulsed sources	when when when	N
State works	The determination of Δt , the nominal pulse duration of a source, requires the determination of the time during which the emission is > 50% of its peak value.	and another and the	N
5.3	Analysis methods	t set set a	Р
5.3.1	Weighting curve interpolations	10 10 N	P
and a	To standardize interpolated values, use linear interpolation on the log of given values to obtain intermediate points at the wavelength intervals desired.	see table 4.1	J P
5.3.2	Calculations	Lover som	P
int would	The calculation of source hazard values shall be performed by weighting the spectral scan by the appropriate function and calculating the total weighted energy.	which which a	Р
5.3.3	Measurement uncertainty	Star with and	Р
Set .	The quality of all measurement results must be quantified by an analysis of the uncertainty.	the set as	P
6	LAMP CLASSIFICATION	me an in	Р
SEA WAR	For the purposes of this standard it was decided that the values shall be reported as follows:	see table 6.1	er arrive Part
an santara Santara	 for lamps intended for general lighting service, the hazard values shall be reported as either irradiance or radiance values at a distance which produces an illuminance of 500 lux, but not at a distance less than 200 mm 	A STATES AND A STATES	N
meret we	 for all other light sources, including pulsed lamp sources, the hazard values shall be reported at a distance of 200 mm 	area and the analysis	Р
6.1	Continuous wave lamps	St 5t 5t	P
6.1.1	Exempt Group	The april of	Р
Share a	In the exempt group is lamp, which does not pose any photobiological hazard. The requirement is met by any lamp that does not pose:	white white w	P

100	IEC/EN 62471	The average	
Clause	Requirement + Test	Result – Remark	Verdic
Set .	 an actinic ultraviolet hazard (E_s) within 8-hours exposure (30000 s), nor 	10 10 5	Р
er er Stor	 a near-UV hazard (E_{UVA}) within 1000 s, (about 16 min), nor 	an an w	Р
n se se	- a retinal blue-light hazard (L_B) within 10000 s (about 2,8 h), nor	and and and	Р
all's	– a retinal thermal hazard (L _R) within 10 s, nor	in the work of	Р
Whitek	– an infrared radiation hazard for the eye (E_{IR}) within 1000 s	and and we	P
marth an	Lamps that emit infrared radiation without a strong visual stimulus and do not pose a near-infrared retinal hazard (L_{IR}), within 1000 s are in Risk Exempt Group	NUTS AND AND	P
6.1.2	Risk Group 1 (Low-Risk)	at at at	N .
4. AN	In this group is lamp, which exceeds the limits for the exempt group but that does not pose:	where the s	N
mar	 an actinic ultraviolet hazard (E_s) within 10000 s, nor 	which which wh	Ň
de la	- a near ultraviolet hazard (EUVA) within 300 s, nor	the state of	N
an a Let i	- a retinal blue-light hazard (L _B) within 100 s, nor	where one are	N N
	- a retinal thermal hazard (L _R) within 10 s, nor	1 5 8	N
6 - Pr	– an infrared radiation hazard for the eye (E_{IR}) within 100 s	Same an	N
let and	Lamps that emit infrared radiation without a strong visual stimulus and do not pose a near-infrared retinal hazard (L_{IR}), within 100 s are in Risk Group 1.	south souther a	N
6.1.3	Risk Group 2 (Moderate-Risk)	and a start and the second	Ň
and an	This requirement is met by any lamp that exceeds the limits for Risk Group 1, but that does not pose:		N
5 ⁴ .5	 an actinic ultraviolet hazard (E_s) within 1000 s exposure, nor 	at the set	N
34	- a near ultraviolet hazard (E _{UVA}) within 100 s, nor	a and an	Ň
et where	- a retinal blue-light hazard (L_B) within 0,25 s (aversion response), nor	A MALIER MALIER IN	N
White a	 a retinal thermal hazard (L_R) within 0,25 s (aversion response), nor 	most white whi	N
18	– an infrared radiation hazard for the eye (E_{IR}) within 10 s	a de de	N
10 ⁴² - 10 16 ⁴ - 15 ⁴	Lamps that emit infrared radiation without a strong visual stimulus and do not pose a near-infrared retinal hazard (L_{IR}), within 10 s are in Risk Group 2.	and the second	N
6.1.4	Risk Group 3 (High-Risk)	and and a	N
- Multer	Lamps which exceed the limits for Risk Group 2 are in Group 3.	white white w	N
6.2	Pulsed lamps	A 15 16	N

Waltek Testing Group (Foshan) Co., Ltd. http://www.waltek.com.cn

Reference No.: WTF22F04082679N

IEC/EN 62471				
Clause	Requirement + Test	Result – Remark	Verdict	
- 400- - 500-	Pulse lamp criteria shall apply to a single pulse and to any group of pulses within 0,25 s.	10 10 10 10	N	
	A pulsed lamp shall be evaluated at the highest nominal energy loading as specified by the manufacturer.	and all all	N	
	The risk group determination of the lamp being tested shall be made as follows:	and show show	N	
Sher	 a lamp that exceeds the exposure limit shall be classified as belonging to Risk Group 3 (High-Risk) 	all all and a second as	N	
and the set	 for single pulsed lamps, a lamp whose weighted radiant exposure or weighted radiance does is below the EL shall be classified as belonging to the Exempt Group 	AND AND AND AND	N	
an an Stat yanii A aa aa	 for repetitively pulsed lamps, a lamp whose weighted radiant exposure or weighted radiance dose is below the EL, shall be evaluated using the continuous wave risk criteria discussed in clause 6.1, using time averaged values of the pulsed emission 	net and and	N	

-		1	7
-	1		P
	V		

Wav	elength	UV hazard function	Wavelength	UV hazard function
J λ	"nm	S _{υν} (λ)	λ, nm	S _{υν} (λ)
200		0,030	313*	0,006
in in	205	0,051	315	0,003
15 5	210	0,075	316	0,0024
-24	215	0,095	317	0,0020
3 - S.	220	0,120	318	0,0016
- an-	225	0,150	319	0,0012
	230	0,190	320	0,0010
	235	0,240	322	0,00067
State State	240	0,300	323	0,00054
	245	0,360	325	0,00050
See Andrew	250	0,430	328	0,00044
2	254*	0,500	330	0,00041
. Walk	255	0,520	333*	0,00037
d.	260	0,650	335	0,00034
me m	265	0,810	340	0,00028
15 1	270	1,000	345	0,00024
er mer	275	0,960	350	0,00020
\$ _\$	280*	0,880	355	0,00016
-340-	285	0,770	360	0,00013
Set .	290	0,640	365*	0,00011
All S	295	0,540	370	0,000093
5 3	297*	0,460	375	0,000077
	300	0,300	380	0,000064
Ser and	303*	0,120	385	0,000053
	305	0,060	390	0,000044
and the	308	0,026	395	0,000036
	310	0,015	400	0,000030

¹ Wavelengths chosen are representative: other values should be obtained by logarithmic interpolation at intermediate wavelengths.

* Emission lines of a mercury discharge spectrum.

Ξ

able 4.2	sources	functions for assessing retinal hazards fr	om broadband optical P
Wavelength		Blue-light hazard function B (λ)	Burn hazard function R (λ)
19 A.	300	0,01	1 1 5 5
$v_{e} \sim v_{e}$	305	0,01	the the the the
	310	0,01	
5 . 5	315	0,01	1 5 5
	320	0,01	en an an an
6 <i>5</i>	325	0,01	1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1
15	330	0,01	the way was and a
	335	0,01	the second second
5	340	0,01	1 10 10 10 13
$s_{V_{n-2}}$	345	0,01	and any and sur
1	350	0,01	
S. 12	355	0,01	1. 5. 5. 2
400	360	0,01	men an an
8 3	365	0,01	1 1 1 1 1
. Ser	370	0,01	STER STER STATES
	375	0,01	
- 5 ⁰	380	0,01	0,1
de 1	385	0,013	0,13
1	390	0,025	0,25
S	395	0,05	0,5
$b_{ij} = b_{ij}$	400	0,10	1,0
18 1	405	0,20	2,0
S. S.	410	0,40	4,0
	415	0,80	8,0
5 - S.C.	420	0,90	9,0
State -	425	0,95	9,5
	430	0,98	9,8
	435	1,00	10,0
8° ~	440	1,00	10,0
di la	445	0,97	9,7
N. M	450	0,94	9,4
	455	0,90	9,0
6.5	460	0,80	8,0
24	465	0,70	7,0
	470	0,62	6,2
100	475	0,55	5,5
4	480	0,45	4,5
15	485	0,40	4,0
the M	490	0,22	2,2
	495	0,16 10 ^[(450-λ)/50]	1,6
6 ⁴⁰ . S	500-600		1,0
30	600-700	0,001	1,0 10 ^[(700-λ)/500]
1. J. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.	700-1050	the mar in the second	
	1050-1150		0,2
	1150-1200 1200-1400	A A S S S	0,2.10 ^{0,02(1150-λ)} 0,02

Reference No.: WTF22F04082679N

	1	7
6	 A	P
	1	

2

Hazard Name	Relevant equation	Wavelength range nm	Exposure duration sec	Limiting aperture rad (deg)	EL in terms of constant irradiance W•m ⁻²		
Actinic UV skin & eye	$E_{S} = \sum E_{\lambda} \bullet S(\lambda) \bullet \Delta \lambda$	200 - 400	< 30000	1,4 (80)	30/t		
Eye UV-A	$E_{UVA} = \sum E_{\lambda} \bullet \Delta \lambda$	315 – 400	≤1000 >1000	1,4 (80)	10000/t 10		
Blue-light small source	$E_{B} = \sum E_{\lambda} \bullet B(\lambda) \bullet \Delta \lambda$	300 – 700	≤100 >100	< 0,011	100/t 1,0		
Eye IR	$E_{IR} = \sum E_{\lambda} \bullet \Delta \lambda$	780 –3000	≤1000 >1000	1,4 (80)	18000/t ^{0,75} 100		
Skin thermal	$E_{H} = \sum E_{\lambda} \bullet \Delta \lambda$	380 - 3000	< 10	2π sr	20000/t ^{0,75}		

Table 5.5 Sur	mmary of the ELs for th	e retina (radian	ce based valu	ies)	JULY JULY PULY	
Hazard Name	Relevant equation	Wavelength range nm	Exposure duration sec	Field of view radians	EL in terms of constant radiance W•m ⁻² •sr ⁻¹)	
Blue light	$L_B = \sum L_\lambda \bullet B(\lambda) \bullet \Delta \lambda$	300 – 700	0,25 - 10 10-100 100-10000 ≥ 10000	0,011•√(t/10) 0,011 0,0011•√t 0,1	10 ⁶ /t 10 ⁶ /t 10 ⁶ /t 100	
Retinal thermal	$L_{R} = \sum L_{\lambda} \bullet R(\lambda) \bullet \Delta \lambda$	380 – 1400	< 0,25 0,25 – 10	0,0017 0,011∙√(t/10)	50000/(α•t ^{0,25}) 50000/(α•t ^{0,25})	
Retinal thermal (weak visual stimulus)	$L_{IR} = \sum L_{\lambda} \bullet R(\lambda) \bullet \Delta \lambda$	• R($λ$) • $\Delta λ$ 780 – 1400 > 10 0,011		6000/α		

Waltek Testing Group (Foshan) Co., Ltd. http://www.waltek.com.cn

0

. *

	Action			Emission Measurement						
Risk	spectr	Symbol	Units	Exe	empt	Low	Low risk			risk
	um			Limit	Result	Limit	Result	Limi	it	Resul
Actinic UV	S _{UV} (λ)	Es	W•m ⁻²	0,001	0	0,003	37 - C	0,03	3	· · · · ·
Near UV		EUVA	W•m ⁻²	0.33	0 33 100			S		
Blue light	Β(λ)	LB	W•m⁻ ²∙sr⁻¹	100	3.932e-1	10000	and the second s	400000		• 3
Blue light, small source	Β(λ)	EB	W•m ⁻²	0.01	artin yartin ar 	1,0	1,0 40			
Retinal thermal	R(λ)	L _R	W∙m ⁻ ²•sr ⁻¹	28000/α	7.492e0	28000/α		71000)/α	S
Retinal thermal, weak	R(λ)	Lir	W•m ⁻	545000 0.0017 ≤α≤ 0.011	ANDER WALL	ning and a string and a string and a				ann Santa
visual stimulus **	Set shi	of superior	² •Sr ⁻¹	6000/α 0.011 ≤α≤ 0.1	the second second second second					
IR radiation , eye	1	E _{IR}	W•m⁻²	100	0 570 3200		0	5 ¹⁰⁵		
		d as one with of non-GLS s		adian. Avera	ging field of vie	ew at 10000 s	is 0.1 rad	ian.	N ²	-and
1.0								easured //m2/sr)		
0.8-						Risk Gi 11(R	oup) 3.	932e-1	1.0	000e2
						Group	o 1) ^{5.}	110e-1	1.(000e4
0.6-					1.7(Risk Group 2) 5.117e-1 4.000e LR RFOV Measured Limit (mrad) (W/m2/sr) (W/m2/ (W/m2/ 11(Exempt Risk Group) 7.492e0					
ق م ۵.4-										
								800e5		
0.2-					11(Risk Group 1) 7.492e0 2.800e					
0.2-								492e0	2.8	800e5

Waltek Testing Group (Foshan) Co., Ltd. http://www.waltek.com.cn

~0..LID /

Attachment 1: Equipment List

Equipment	Model/Type	Cal. Due. Date		
Biosafety ultraviolet light leaking spectrum analysis system	EVERFINE PMS-700	2023-01-11		
Precise digital display dc current stabilized voltage supply	EVERFINE WY305-V1	2023-01-11		
High standards of stable ultraviolet radiation power	EVERFINE UVS-8005	2023-01-11		
Ultraviolet radiation standard lamp	EVERFINE SIS-631	2023-01-11		
D204BH ray radiation intensity standard lamp	EVERFINE D204BH-3200K	2023-01-11		
AC power source	ACPOWER AFC-110104F	2023-01-11		
Temperature & Humidity Datalogger	Testo 608-H1	2023-01-11		

Attachment 2: Photo document

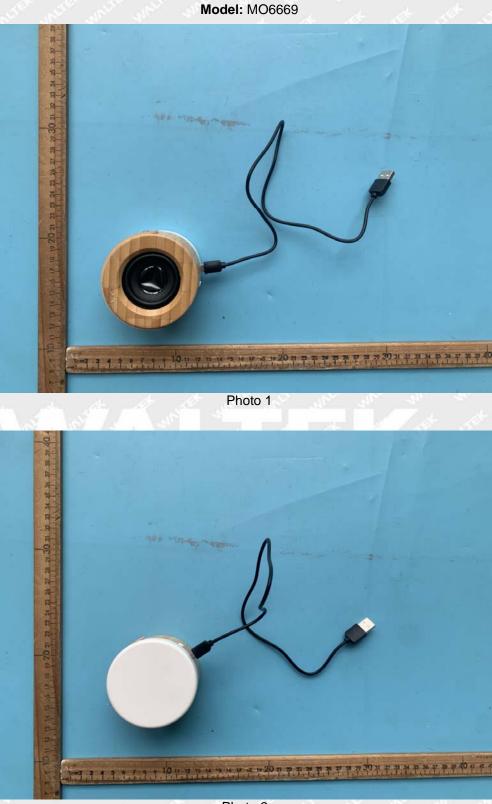


Photo 2

===== End of Report ======

Waltek Testing Group (Foshan) Co., Ltd. http://www.waltek.com.cn