

TEST REPORT

Reference No.....: WTF21F10108560N

Applicant.....: Mid Ocean Brands B.V.

Hong Kong

Manufacturer: 109979

Address..... /

Product Name.....: 1080P StreamCam with white LED

Model No.....: MO6395

Photobiological safety of lamps and lamp systems

Standards.....: EN 62471:2008

IEC 62471:2006 (First Edition)

Date of Receipt sample..... : 2021-10-13

Date of Test...... : 2021-10-13 to 2021-10-21

Date of Issue..... : 2021-10-21

Test Report Form No......: WPL-62471A-01A

Test Result.....: Pass

Remarks:

The results shown in this test report refer only to the sample(s) tested, this test report cannot be reproduced, except in full, without prior written permission of the company. The report would be invalid without specific stamp of test institute and the signatures of compiler and approver.

Prepared By: Waltek Testing Group (Foshan) Co., Ltd.

Address: No.13-19, 2/F., 2nd Building, Sunlink International Machinery City,
Chencun, Shunde District, Foshan, Guangdong, China
Tel:+86-757-23811398 Fax:+86-757-23811381 E-mail:info@waltek.com.cn

Compiled by:

Finn Yu/ Project Engineer

Approved by:

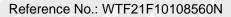
Akin Xu / Manager

Reference No.: WTF21F10108560N Page	e 2 of 16
-------------------------------------	-----------

Test item desc	ription	: 1080P StreamCam with wh	nite LED	
Trade Mark	12	: None		
General remark	rs: de la company	the contraction of the contracti		a de de
'(See remark #) '(See appended Throughout this Remark: 1. Measureme 25°C±5°C.	" refers to a remark a table)" refers to a tab report a comma (poient was conducted at	nal information appended to the appended to the report. Th	parator.	ent temperature
Item	Model	Ratings	ССТ	Driver
1_	MO6395	5VDC	- III III	
All tests were ca	conducted under luminuried out at model MC	naire/lamp/LED rating. 06395. lamp and sensor: 200.0 mm.		
The tests were of All tests were can a = 0.1000 radia	conducted under lumin irried out at model MC in, distance between	06395. lamp and sensor: 200.0 mm.	STREET STREET	with white whiteh
The tests were α All tests were ca α = 0.1000 radia Test item partic	conducted under lumin irried out at model MC in, distance between	D6395.	ous wave lamps	□ pulsed lamps
The tests were of All tests were can be as a substitution of a substitution of the test of	conducted under lumin urried out at model MC un, distance between culars	D6395. lamp and sensor: 200.0 mm.		□ pulsed lamps
The tests were of All tests were can a = 0.1000 radia Test item partic Tested lamp Tested lamp sys	conducted under lumin urried out at model MC un, distance between culars	06395. lamp and sensor: 200.0 mm. : See below : ⊠ continuo	stem	□ pulsed lamps risk 2□ risk 3□
The tests were α All tests were α a = 0.1000 radia Test item partic Tested lamp Tested lamp systamp classificat	conducted under lumin urried out at model MC un, distance between culars	06395. lamp and sensor: 200.0 mm. See below	stem	± set wet ou
The tests were of All tests were can be all tests and tests are can be all tests and tests are can be all tes	conducted under luminaried out at model MC in, distance between culars	06395. Iamp and sensor: 200.0 mm. : See below : ⊠ continuo : No lamp system: exempt⊠	stem	± set wet ou
The tests were of All tests were can be as a substitution of a substitution of the tests of the	conducted under lumin urried out at model MC un, distance between culars	06395. Iamp and sensor: 200.0 mm. : See below : ⊠ continuo : No lamp system: exempt⊠	stem risk 1⊡	± set wet ou
The tests were of All tests were can be a can be	conducted under luminaried out at model MC in, distance between culars	06395. lamp and sensor: 200.0 mm. : See below : ⊠ continuo : No lamp system : exempt⊠ :	stem risk 1⊡	± set wet ou
The tests were of All tests were can a = 0.1000 radia Test item particular and a second a se	conducted under luminaried out at model MC in, distance between culars	06395. lamp and sensor: 200.0 mm. : See below : ⊠ continuo : No lamp system : exempt⊠ : : : See model	stem risk 1⊡	t get siget ni
The tests were of All tests were can a = 0.1000 radia Test item partical Tested lamp system can be cape	conducted under luminaried out at model MC in, distance between culars	06395. lamp and sensor: 200.0 mm. : See below : ⊠ continuo : No lamp system : exempt⊠ : : See model : None andard: None : See page 1	stem risk 1□ list in page 2	t get siget ni
The tests were of All tests were can a = 0.1000 radia Test item particular and a second a se	conducted under luminaried out at model MC in, distance between culars	06395. lamp and sensor: 200.0 mm. : See below : ⊠ continuo : No lamp system : exempt⊠ : : : See model : None andard: None : See page 1 : 25 ± 5 °C	stem risk 1□ list in page 2	t get siget as
The tests were of All tests were can a = 0.1000 radia Test item particular and a second a se	conducted under luminaried out at model MC in, distance between culars	06395. lamp and sensor: 200.0 mm. : See below : ⊠ continuo : No lamp system : exempt⊠ : : : See model : None andard: None : See page 1 : 25 ± 5 °C	stem risk 1□ list in page 2	t get siget ni
The tests were of All tests were can a = 0.1000 radia Test item particular and a second a se	conducted under luminaried out at model MC in, distance between culars	06395. lamp and sensor: 200.0 mm. : See below : ⊠ continuo : No lamp system : exempt⊠ : : : See model : None andard: None : See page 1 : 25 ± 5 °C	stem risk 1□ list in page 2	t get siget as
The tests were of All tests were can a = 0.1000 radia Test item particular Tested lamp Tested lamp systamp classificate the Lamp cap Bulb Rated of the lame and Seasoning of land the Lamp cap Used measurem the Temperature by the Information for seasoning of seasoning of seasoning cap	conducted under luminaried out at model MC in, distance between culars	06395. lamp and sensor: 200.0 mm. : See below : ⊠ continuo : No lamp system : exempt⊠ : : : See model : None andard: None : See page 1 : 25 ± 5 °C	risk 1□ list in page 2	t get siget as
The tests were of All tests were can a = 0.1000 radia Test item particular Tested lamp system cap	conducted under luminaried out at model MC an, distance between culars	06395. lamp and sensor: 200.0 mm. : See below : See below : No lamp system : exempt : : See model : None andard	risk 1□ list in page 2	± set wet ou

Waltek Testing Group (Foshan) Co., Ltd. http://www.waltek.com.cn

	IEC/EN 62471				
Clause	Requirement + Test	Result – Remark	Verdict		
	the title title state after after	24 24 24	* **		
4	EXPOSURE LIMITS	P			
4.1	General				
in aller	The exposure limits in this standard is not less than 0,01 ms and not more than any 8-hour period and should be used as guides in the control of exposure	THE WALL WALL SHOL	Р		
all life it	Detailed spectral data of a light source are generally required only if the luminance of the source exceeds 10 ⁴ cd·m ⁻²		P		
4.3	Hazard exposure limits	The Age Age	Р		
4.3.1	Actinic UV hazard exposure limit for the skin and eye	CLES MUTLES MUTLE ME	Р		
in Andre	The exposure limit for effective radiant exposure is 30 J·m ⁻² within any 8-hour period	IN MALTER MALTER MALE	Pun		
Whitek W	To protect against injury of the eye or skin from ultraviolet radiation exposure produced by a broadband source, the effective integrated spectral irradiance, Es, of the light source shall not exceed the levels defined by:	MILITER MILITER MILITER	MATER MATER		
TEEF MUZ	$E_{s} \cdot t = \sum_{200}^{400} \sum_{t} E_{\lambda}(\lambda, t) \cdot S_{UV}(\lambda) \cdot \Delta t \cdot \Delta \lambda \le 30$ J·m ⁻²	et gritet un	P		
AND THE	The permissible time for exposure to ultraviolet radiation incident upon the unprotected eye or skin shall be computed by:	uncit sincite suncite	Р		
alle in a	$t_{\text{max}} = \frac{30}{E_{\text{S}}}$ s	MALTER MALTER MALTE	and MP		
4.3.2	Near-UV hazard exposure limit for eye	NITER INSTERNATION OF	Р		
sek vince k vincek vek	For the spectral region 315 nm to 400 nm (UV-A) the total radiant exposure to the eye shall not exceed 10000 J·m ⁻² for exposure times less than 1000 s. For exposure times greater than 1000 s (approximately 16 minutes) the UV-A irradiance for the unprotected eye, E _{UVA} , shall not exceed 10 W·m ⁻² .	Whitek whitek white			
	The permissible time for exposure to ultraviolet radiation incident upon the unprotected eye for time less than 1000 s, shall be computed by:	arte anti mer	Р		
Ek Mired	$t_{\text{max}} \le \frac{10\ 000}{E_{\text{UVA}}} \qquad \text{s}$	# 18# 18# W	P P		
4.3.3	Retinal blue light hazard exposure limit	See table 4.2	Р		



	IEC/EN 62471		
Clause	Requirement + Test	Result – Remark	Verdict
	of the set	46 44 40	
ancia an Sept ancis St. Sept	To protect against retinal photochemical injury from chronic blue-light exposure, the integrated spectral radiance of the light source weighted against the blue-light hazard function, B(λ), i.e., the blue-light weighted radiance , L _B , shall not exceed the levels defined by:	THE MALTER WALTER WALTER	Р
Sale ($L_{B} \cdot t = \sum_{300}^{700} \sum_{t} L_{\lambda}(\lambda, t) \cdot B(\lambda) \cdot \Delta t \cdot \Delta \lambda \le 10^{6} \qquad J \cdot m^{-2} \cdot sr^{-1}$	for t \le 10^4 s $t_{\text{max}} = \frac{10^6}{L_{\text{B}}}$	Р
on w	$L_{\rm B} = \sum_{300}^{700} L_{\lambda} \cdot B(\lambda) \cdot \Delta \lambda \le 100 \qquad \qquad W \cdot \text{m}^{-2} \cdot \text{sr}^{-1}$	ALL THE THE THE	Р
4.3.4	Retinal blue light hazard exposure limit - small source	ice along the the	N
ier _{untie}	Thus the spectral irradiance at the eye E_{λ} , weighted against the blue-light hazard function $B(\lambda)$ shall not exceed the levels defined by:	A MILTER SHATER WHITE W	N
Mrs.	$E_{B} \cdot t = \sum_{300}^{700} \sum_{t} E_{\lambda}(\lambda, t) \cdot B(\lambda) \cdot \Delta t \cdot \Delta \lambda \le 100 J \cdot m^{-2}$	Martin Marin Marin Mar	N
ing. M	$E_{\rm B} = \sum_{300}^{700} E_{\lambda} \cdot B(\lambda) \cdot \Delta \lambda \le 1 \qquad W \cdot m^{-2}$	ALLER MILLER WALLE WHILE	an N
4.3.5	Retinal thermal hazard exposure limit	of Santin and a	Р
alvitet alvitet	To protect against retinal thermal injury, the integrated spectral radiance of the light source, L_{λ} , weighted by the burn hazard weighting function $R(_{\lambda})$ (from Figure 4.2 and Table 4.2), i.e., the burn hazard weighted radiance, shall not exceed the levels defined by:	White white white whi	P
ni et vini	$L_{\rm R} = \sum_{380}^{1400} L_{\lambda} \cdot R(\lambda) \cdot \Delta \lambda \le \frac{50000}{\alpha \cdot t^{0.25}}$ W · m ⁻² · sr ⁻¹	(10 µs ≤ t ≤ 10 s)	Р
4.3.6	Retinal thermal hazard exposure limit – weak visual st	timulus	P
durited	For an infrared heat lamp or any near-infrared source where a weak visual stimulus is inadequate to activate the aversion response, the near infrared (780 nm to 1400 nm) radiance, L _{IR} , as viewed by the eye for exposure times greater than 10 s shall be limited to:	ANTIFE WRITER WRITER WRITE	Р
CEEK WAL	$L_{\rm IR} = \sum_{780}^{1400} L_{\lambda} \cdot R(\lambda) \cdot \Delta \lambda \le \frac{6000}{\alpha} \qquad \qquad \text{W} \cdot \text{m}^{-2} \cdot \text{sr}^{-1}$	LIER WRITER WRITER	P
4.3.7	Infrared radiation hazard exposure limits for the eye	of the time of	Р

	IEC/EN 62471		
Clause	Requirement + Test	Result – Remark	Verdict
	the title of the sales of the shirt of the	24 24 20 Th	·
greet on Steat ones Steat	The avoid thermal injury of the cornea and possible delayed effects upon the lens of the eye (cataractogenesis), ocular exposure to infrared radiation, E _{IR} , over the wavelength range 780 nm to 3000 nm, for times less than 1000 s, shall not exceed:	ALTER SHALTER SHALTER SHALL	Р
SULTER.	$E_{\text{IR}} = \sum_{780}^{3000} E_{\lambda} \cdot \Delta \lambda \le 18000 \cdot t^{-0.75}$ W · m ⁻²	AND AND AND	P
,	For times greater than 1000 s the limit becomes:	The Mr. Mr.	Р
NUTE SUN SOFT ST	$E_{\rm IR} = \sum_{780}^{3000} E_{\lambda} \cdot \Delta \lambda \le 100 \qquad \qquad \mathbf{W} \cdot \mathbf{m}^{-2}$	STEEL SHITTER SHITTER SH	Р
4.3.8	Thermal hazard exposure limit for the skin	The White Mark And	P. P.
WITER	Visible and infrared radiant exposure (380 nm to 3000 nm) of the skin shall be limited to:	atter state south	WILLIAM MULT
UNITEK U	$E_{H} \cdot t = \sum_{380}^{3000} \sum_{t} E_{\lambda} (\lambda, t) \cdot \Delta t \cdot \Delta \lambda \le 20000 \cdot t^{0,25} \qquad J \cdot m^{-2}$	Lift night spirit s	P.
, e	<u> </u>		& B
5	MEASUREMENT OF LAMPS AND LAMP SYSTEM	1S	P
5.1	Measurement conditions		P
NILLER.	Measurement conditions shall be reported as part of the evaluation against the exposure limits and the assignment of risk classification.	Marie Marie Marie	P P
5.1.1	Lamp ageing (seasoning)	The The M.	N
Je in	Seasoning of lamps shall be done as stated in the	St. St. St.	N

appropriate IEC lamp standard. 5.1.2 Test environment Р For specific test conditions, see the appropriate IEC Ρ lamp standard or in absence of such standards, the appropriate national standards or manufacturer's recommendations. 5.1.3 Ρ Extraneous radiation Careful checks should be made to ensure that Р extraneous sources of radiation and reflections do not add significantly to the measurement results. 5.1.4 Ρ Lamp operation Operation of the test lamp shall be provided in accordance with: the appropriate IEC lamp standard, or N

	IEC/EN 62471		4
Clause	Requirement + Test	Result – Remark	Verdic
ner an	the manufacturer's recommendation	Cler Street Street	Р
5.1.5	Lamp system operation		Р
71/2	The power source for operation of the test lamp shall be provided in accordance with:	The Market Shrift shi	P
11/17	the appropriate IEC standard, or	the state of the state	Р
28	the manufacturer's recommendation	24 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	Р
5.2	Measurement procedure	See Ster Mile	Р
5.2.1	Irradiance measurements	10 40 40	P
is an	Minimum aperture diameter 7mm.	The riter with a	Р
J- L	Maximum aperture diameter 50 mm.		P ال
- Aller	The measurement shall be made in that position of the beam giving the maximum reading.	and the same	All P
Mr. S	The measurement instrument is adequate calibrated.	MATER MATER WAITE	All A P
5.2.2	Radiance measurements	at all all	NO P
5.2.2.1	Standard method	Р	
in war	The measurements made with an optical system.	10 1 / ST 10	P
* WITE	The instrument shall be calibrated to read in absolute radiant power per unit receiving area and per unit solid angle to acceptance averaged over the field of view of the instrument.	Maril Maril Maril	P
5.2.2.2	Alternative method	The still spile	JIP
nitek _o uri	Alternatively to an imaging radiance set-up, an irradiance measurement set-up with a circular field stop placed at the source can be used to perform radiance measurements.	uter whiter whiter w	P-
5.2.3	Measurement of source size	the street when the	P
WALTER.	The determination of α , the angle subtended by a source, requires the determination of the 50% emission points of the source.	White white white	P
5.2.4	Pulse width measurement for pulsed sources	At 5th 5th	Ñ
ites and	The determination of Δt , the nominal pulse duration of a source, requires the determination of the time during which the emission is > 50% of its peak value.	TEL METER MUTER ME	N
5.3	Analysis methods		Р
5.3.1	Weighting curve interpolations	30	Р

Reference No.: WTF21F10108560N Page 7 of 16

IEC/EN 62471					
Clause	use Requirement + Test Result - Remark				
Art	the title title after after after	The The Co.			
anere an	To standardize interpolated values, use linear interpolation on the log of given values to obtain intermediate points at the wavelength intervals desired.	see table 4.1	P III		
5.3.2	Calculations	L. Ch. A.	Р		
THE TEN	The calculation of source hazard values shall be performed by weighting the spectral scan by the appropriate function and calculating the total weighted energy.	HALLER WALLER WATER	MITE WATER		
5.3.3	Measurement uncertainty	4 4	P		
re in	The quality of all measurement results must be quantified by an analysis of the uncertainty.	All the Marie Marie M.	Р		

	LAMP CLASSIFICATION		
	For the purposes of this standard it was decided that the values shall be reported as follows:	see table 6.1	Р
	for lamps intended for general lighting service, the hazard values shall be reported as either irradiance or radiance values at a distance which produces an illuminance of 500 lux, but not at a distance less than 200 mm	nuter until moute	Р
yani. Sanii k	 for all other light sources, including pulsed lamp sources, the hazard values shall be reported at a distance of 200 mm 	where are and	N
6.1	Continuous wave lamps	Chillie William Shrift	P
6.1.1	Exempt Group	A A	P-
iek va Ive an	In the exempt group is lamp, which does not pose any photobiological hazard. The requirement is met by any lamp that does not pose:	ate and and	P
t get	 an actinic ultraviolet hazard (E_s) within 8-hours exposure (30000 s), nor 	The All the	Р
24	 a near-UV hazard (E_{UVA}) within 1000 s, (about 16 min), nor 	Auril Auril Auril	P
The s	 a retinal blue-light hazard (L_B) within 10000 s (about 2,8 h), nor 	district white week	, I P
Co. M.	– a retinal thermal hazard (L _R) within 10 s, nor	THE STATE OF THE STATE OF	Р
EK JOLITE JUNITER	 an infrared radiation hazard for the eye (E_{IR}) within 1000 s 	the first of	P P
	Lamps that emit infrared radiation without a strong visual stimulus and do not pose a near-infrared retinal hazard (L _{IR}), within 1000 s are in Risk Exempt Group	antiet anter ante	Р

Waltek Testing Group (Foshan) Co., Ltd. http://www.waltek.com.cn

Reference No.: WTF21F10108560N Page 8 of 16

	IEC/EN 62471				
Clause	Requirement + Test	Result – Remark	Verdict		
	the life that the state with the	40 30 4			
6.1.2	Risk Group 1 (Low-Risk)	The stiff of the st	N		
TEK MET	In this group is lamp, which exceeds the limits for the exempt group but that does not pose:	at the set is	N		
e John	 an actinic ultraviolet hazard (E_s) within 10000 s, nor 		N		
24	 a near ultraviolet hazard (E_{UVA}) within 300 s, nor 	Auto, our, our	N		
12.55 C	 a retinal blue-light hazard (L_B) within 100 s, nor 	10 10 10 10 10 10 10 10 10 10 10 10 10 1	N N		
gr. ~	 a retinal thermal hazard (L_R) within 10 s, nor 	Mary May My	N		
ani	 an infrared radiation hazard for the eye (E_{IR}) within 100 s 	STEP WILLIAM WINTERS AND	N		
TEN SHOUTE	Lamps that emit infrared radiation without a strong visual stimulus and do not pose a near-infrared retinal hazard (L _{IR}), within 100 s are in Risk Group 1.	A MULTER WALTER SIRES	N		
6.1.3	Risk Group 2 (Moderate-Risk)	N			
Section 1	This requirement is met by any lamp that exceeds the limits for Risk Group 1, but that does not pose:	at the state	N.		
e e	 an actinic ultraviolet hazard (E_s) within 1000 s exposure, nor 	The state of the s	N		
20	 a near ultraviolet hazard (E_{UVA}) within 100 s, nor 	The state of	N		
SALTER.	 a retinal blue-light hazard (L_B) within 0,25 s (aversion response), nor 	THE WALLE	THE STATE OF		
SILILER S	 a retinal thermal hazard (L_R) within 0,25 s (aversion response), nor 	Lifet Street Mares	MATER NO		
ni ^{rek} uri	 an infrared radiation hazard for the eye (E_{IR}) within 10 s 	all the state of	N-		
SEL SUPER	Lamps that emit infrared radiation without a strong visual stimulus and do not pose a near-infrared retinal hazard (L _{IR}), within 10 s are in Risk Group 2.	EX WILEY MITTER WITH	Et JUN		
6.1.4	Risk Group 3 (High-Risk)	N			
AL.	Lamps which exceed the limits for Risk Group 2 are in Group 3.	White White whi	N		
6.2	Pulsed lamps	THE REPORT OF THE PARTY OF	si Si N		
istelle and	Pulse lamp criteria shall apply to a single pulse and to any group of pulses within 0,25 s.	of the state of	THE N		
EK WALTE	A pulsed lamp shall be evaluated at the highest nominal energy loading as specified by the manufacturer.	# INTER WITH WAIT	N N		
NET EIL	The risk group determination of the lamp being tested shall be made as follows:	The State assist	Third N. C		

IEC/EN 62471				
Clause	Requirement + Test	Result – Remark	Verdict	
1	the left left with with which which	The An An A	+.	
ALCA ACCA ACCA	 a lamp that exceeds the exposure limit shall be classified as belonging to Risk Group 3 (High- Risk) 	ALTER MALTER WALTER WALTER	N N	
in the	 for single pulsed lamps, a lamp whose weighted radiant exposure or weighted radiance does is below the EL shall be classified as belonging to the Exempt Group 	THE SHOP SHOW SHOW	N V	
allitek Sitek alli	 for repetitively pulsed lamps, a lamp whose weighted radiant exposure or weighted radiance dose is below the EL, shall be evaluated using the continuous wave risk criteria discussed in clause 6.1, using time averaged values of the pulsed emission 	STATES STATES STATES STATES	N extract	

able 4.1	- · · · · · · · · · · · · · · · · · · ·	ighting function for assessing u	ultraviolet hazards for sl Wavelength	din and eye P UV hazard function
λ, n		S _{uv} (λ)	λ, nm	S _{υν} (λ)
20	0	0,030	313*	0,006
20	5	0,051	315	0,003
21	0	0,075	316	0,0024
21	5	0,095	317	0,0020
22	0	0,120	318	0,0016
22	5	0,150	319	0,0012
23	0	0,190	320	0,0010
23	5	0,240	322	0,00067
24	0	0,300	323	0,00054
24	5	0,360	325	0,00050
25	0	0,430	328	0,00044
254	4*	0,500	330	0,00041
25	5	0,520	333*	0,00037
26	0	0,650	335	0,00034
26	5	0,810	340	0,00028
27	0 ,	1,000	345	0,00024
27	5	0,960	350	0,00020
280	O*	0,880	355	0,00016
28	5	0,770	360	0,00013
29	0	0,640	365*	0,00011
29	5	0,540	370	0,000093
297	7*	0,460	375	0,000077
30	0	0,300	380	0,000064
300	3*	0,120	385	0,000053
30	5	0,060	390	0,000044
30	8	0,026	395	0,000036
31	0	0,015	400	0,000030

Wavelengths chosen are representative: other values should be obtained by logarithmic interpolation at intermediate wavelengths.

^{*} Emission lines of a mercury discharge spectrum.

	-		7	7
1	A			
		Y.		

	Blue-light bazard function	Burn hazard function		
Wavelength nm	Blue-light hazard function B (λ)	Burn hazard function R (λ)		
300	0,01	THE WALL WAS TO SERVE THE TOTAL THE SERVE THE		
305	0,01			
310	0,01	x		
315	0,01	The state of the state of		
320	0,01			
325	0,01			
330	0,01	The The The		
335	0,01	A 15 10 1		
340	0,01	The state of the s		
345	0,01	4. 2.		
350	0,01			
355	0,01	Way The The Man		
360	0,01			
365	0,01			
370	0,01	. "Me. " " " " " " " " " " " " " " " " " " "		
375	0,01	, 4 JF J		
380	0,01	0,1		
385	0,013	0,13		
390	0,025	0,25		
395	0,05	0,5		
400	0,10	1,0		
405	0,20	2,0		
410	0,40	4,0		
415	0,80	8,0		
420	0,90	9,0		
425	0,95	9,5		
430	0,98	9,8		
435	1,00	10,0		
440	1,00	10,0		
445	0,97	9,7		
450	0,94	9,4		
455	0,90	9,0		
460	0,80	8,0		
465	0,70	7,0		
470	0,62	6,2		
475	0,55	5,5		
480	0,45	4,5		
485	0,40	4,0		
490	0,22	2,2		
495	0,16	1,6		
500-600	10 ^[(450-λ)/50]	1,0		
600-700	0,001	1,0		
700-1050	20, 20, 2	10 ^[(700-λ)/500]		
1050-1150		0,2 0,2.10 ^{0,02(1150-λ)}		

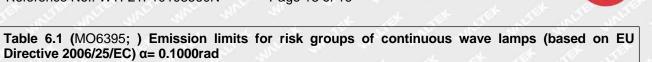
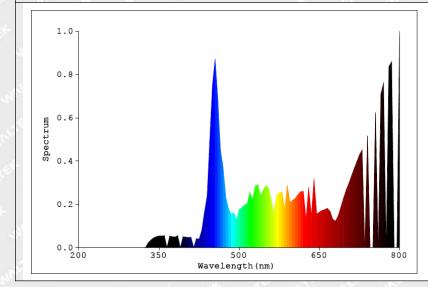
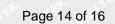


Table 5.4 Summary of the ELs for the surface of the skin or cornea (irradiance based values) P							
Hazard Name	Relevant equation	Wavelength range nm	Exposure duration sec	Limiting aperture rad (deg)	EL in terms of constant irradiance W•m-2		
Actinic UV skin & eye	$E_{S} = \sum E_{\lambda} \bullet S(\lambda) \bullet \Delta \lambda$	200 – 400	< 30000	1,4 (80)	30/t		
Eye UV-A	$E_{UVA} = \sum E_{\lambda} \bullet \Delta \lambda$	315 – 400	≤1000 >1000	1,4 (80)	10000/t 10		
Blue-light small source	$E_B = \sum E_\lambda \bullet B(\lambda) \bullet \Delta \lambda$	300 – 700	≤100 >100	< 0,011	100/t 1,0		
Eye IR	$E_IR = \sum E_\lambda \bullet \Delta \lambda$	780 –3000	≤1000 >1000	1,4 (80)	18000/t ^{0,75} 100		
Skin thermal	$E_H = \sum E_\lambda \bullet \Delta \lambda$	380 – 3000	< 10	2π sr	20000/t ^{0,75}		

Table 5.5	Summary of the ELs for the	ne retina (radian	ce based valu	es)	P
Hazard Nan	ne Relevant equation	Wavelength range nm	Exposure duration sec	Field of view radians	EL in terms of constant radiance W•m ⁻² •sr ⁻¹)
Blue light	$L_B = \sum L_\lambda \bullet B(\lambda) \bullet \Delta \lambda$	300 – 700	0,25 - 10 10-100 100-10000 ≥ 10000	0,011•√(t/10) 0,011 0,0011•√t 0,1	10 ⁶ /t 10 ⁶ /t 10 ⁶ /t 100
Retinal thermal	$L_{R} = \sum L_{\lambda} \bullet R(\lambda) \bullet \Delta\lambda$	380 – 1400	< 0,25 0,25 – 10	0,0017 0,011•√(t/10)	50000/(α•t ^{0,25}) 50000/(α•t ^{0,25})
Retinal thermal (weak visual stimulus)	$L_{IR} = \sum L_{\lambda} \bullet R(\lambda) \bullet \Delta \lambda$	780 – 1400	> 10	0,011	6000/α


Reference No.: WTF21F10108560N Page 13 of 16

	Action spectr um	Symbol	Units	Emission Measurement					
Risk				Exempt		Low risk		Mod risk	
1				Limit	Result	Limit	Result	Limit	Result
Actinic UV	S _{UV} (λ)	Es	W•m⁻²	0,001	3.599e-8	0,003		0,03	5EK
Near UV		Euva	W•m⁻²	0.33	2.378e-4	33	310	100	
Blue light	Β(λ)	L _B	W•m⁻ ²•sr⁻¹	100	1.924e-1	10000	auter out	4000000	ell etc.
Blue light, small source	Β(λ)	Ев	W•m⁻²	0.01	et arriver	1,0	56k -216k 6 - 156k	400	SIRITE SIRIK
Retinal thermal	R(λ)	L _R	W•m⁻ ²•sr⁻¹	28000/α	5.232e0	28000/α	- C-	71000/α	ى بار
Retinal thermal, weak visual	R(λ)	L _{IR}	W•m ⁻ ² •sr ⁻¹	545000 0.0017 ≤α≤ 0.011	ancie unci	WALLER OF	siles and	TER AND TER	WALTER
stimulus **			-51	6000/α 0.011 ≤α≤ 0.1	\$ 1505E\$	intiek on i	.146e-1	WALTE.	andre s
IR radiation , eye		E _{IR}	W•m⁻²	100	1.424e-3	570		3200	34 74


Small source defined as one with α <0.011 radian. Averaging field of view at 10000 s is 0.1 radian.

Involves evaluation of non-GLS source.

LB RFOV	Measured	Limit		
(mrad)	(W/m2/sr)	(W/m2/sr)		
100(Exempt	1.924e-1	1.000e2		
Risk Group)	1.5246-1	1.00002		
11(Risk	3.946e-1	1.000e4		
Group 1)	3.5406-1	1.00064		
1.7(Risk	3.961e-1	4.000e6		
Group 2)	3.3016-1	4.0000		
LR RFOV	Measured	Limit		
(mrad)	(W/m2/sr)	(W/m2/sr)		
11(Exempt	5.232e0	2.800e5		
Risk Group)	3.23260	2.00063		
11(Risk	5.232e0	2.800e5		
Group 1)	0.20260	2.00060		
1.7(Risk	5.251e0 7.100es			
Group 2)	0.20160	7.10065		

Attachment 1: Equipment List

Reference No.: WTF21F10108560N

Equipment	Model/Type	Cal. Due. Date
Biosafety ultraviolet light leaking spectrum analysis system	EVERFINE PMS-700	2022-01-17
Standards reflect the whiteboard	EVERFINE ⊄60	2022-01-17
Precise digital display dc current stabilized voltage supply	EVERFINE WY305-V1	2022-01-17
High standards of stable ultraviolet radiation power	EVERFINE UVS-8005	2022-01-17
Ultraviolet radiation standard lamp	EVERFINE SIS-631	2022-01-17
D204BH ray radiation intensity standard lamp	EVERFINE D204BH-3200K	2022-01-17
AC power source	ACPOWER AFC-110104F	2022-01-17
Temperature & Humidity Datalogger	Testo 608-H1	2022-01-17

W

Attachment 2: Photo Documentation

Model: MO6395

Photo 1

Photo 2

Photo 3
===== End of Report ======